Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Environ Res ; 237(Pt 1): 116838, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37544468

Exposure to environmental chemicals has been linked to an increased risk of pregnancy-induced hypertension (PIH). This prospective cohort study examined the associations between PIH and maternal chemical exposure to four classes of chemicals (i.e., phthalates, bisphenols, perfluoroalkyl acids, non-essential metals and trace minerals). Participants included 420 pregnant women from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort who had data available on diagnosed PIH and environmental chemical exposure. Twelve phthalate metabolites, two bisphenols, eight perfluoroalkyl acids and eleven non-essential metals or trace minerals were quantified in maternal urine or blood samples collected in the second trimester of pregnancy. Associations between the urinary and blood concentrations of these chemicals and PIH were assessed using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. Thirty-five (8.3%) participants were diagnosed with PIH. In single chemical exposure models, two phthalate metabolites, mono-methyl phthalate (MMP) and monoethyl phthalate (MEP), three perfluoroalkyl acids, perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), and one metal, manganese, were associated with increased odds of PIH. The metabolites of di (2-ethylhexyl) phthalate (DEHP) and the molar sum of these metabolites, as well as antimony, displayed trend associations (p < 0.10). In multi-chemical exposure models using LASSO penalized regressions and double-LASSO regressions, MEP (AOR: 1.43, 95% CI: 1.09-1.88, p = 0.009) and PFNA (AOR: 2.03, 95% CI: 1.01-4.07, p = 0.04) were selected as the chemicals most highly associated with PIH. These findings suggest that maternal levels of phthalates and perfluoroalkyl acids may be associated with the diagnosis on PIH. Future research should consider both individual and multi-chemical exposures when examining predictors of PIH and other maternal cardiometabolic health disorders, such as preeclampsia, eclampsia, HELLP syndrome, and gestational diabetes.

2.
Environ Int ; 178: 108087, 2023 08.
Article En | MEDLINE | ID: mdl-37454627

BACKGROUND: Perfluoroalkyl acids (PFAAs) within the broader class of per- and polyfluoroalkyl substances (PFAS) are present in human serum as isomer mixtures, but epidemiological studies have yet to address isomer-specific associations with child development and behavior. OBJECTIVES: To examine associations between prenatal exposure to 25 PFAAs, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) isomers, and child neurodevelopment among 490 mother-child pairs in a prospective Canadian birth cohort, the Alberta Pregnancy Outcomes and Nutrition (APrON) study. To consider the influence of a classic neurotoxicant, total mercury (THg), based on its likelihood of co-exposure with PFAAs from common dietary sources. METHODS: Maternal blood samples were collected in the second trimester and child neurodevelopment was assessed at 2 years of age using the Bayley Scales of Infant and Toddler Development, 3rd Edition (Bayley-III). Linear or curvilinear multiple regression models were used to examine associations between exposures and neurodevelopment outcomes. RESULTS: Select PFAAs were associated with lower Cognitive composite scores, including perfluoroheptanoate (PFHpA) (ß = -0.88, 95% confidence interval (CI): -1.7, -0.06) and perfluorododecanoate (PFDoA) (ß = -2.0, 95% CI: -3.9, -0.01). Non-linear relationships revealed associations of total PFOS (ß = -4.4, 95% CI: -8.3, -0.43), and linear-PFOS (ß = -4.0, 95% CI: -7.5, -0.57) and 1m-PFOS (ß = -1.8, 95% CI: -3.3, -0.24) isomers with lower Language composite scores. Although there was no effect modification, including THg interaction terms in PFAA models revealed negative associations between perfluorononanoate (PFNA) and Motor (ß = -3.3, 95% CI: -6.2, -0.33) and Social-Emotional (ß = -3.0, 95% CI: -5.6, -0.40) composite scores. DISCUSSION: These findings reinforce previous reports of adverse effects of maternal PFAA exposure during pregnancy on child neurodevelopment. The unique hazards posed from isomers of PFOS justify isomer-specific analysis in future studies. To control for possible confounding, mercury co-exposure may be considered in studies of PFAAs.


Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Mercury , Prenatal Exposure Delayed Effects , Pregnancy , Infant , Female , Humans , Birth Cohort , Prospective Studies , Prenatal Exposure Delayed Effects/epidemiology , Fluorocarbons/toxicity , Caprylates/toxicity , Alberta
3.
Front Toxicol ; 5: 1194895, 2023.
Article En | MEDLINE | ID: mdl-37288009

The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most chemicals had AEDs that were lower (i.e., more conservative) than apical PODs in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be protective of potential effects on human health. An assessment of multiple data points for single chemicals revealed that longer exposure duration and varied cell culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated increased chemical potency. Seven chemicals were flagged as outliers when comparing the ratio of tPOD to traditional POD, thus indicating they require further assessment to better understand their hazard potential. Our findings build confidence in the use of tPODs but also reveal data gaps that must be addressed prior to their adoption to support risk assessment applications.

4.
Toxicol Sci ; 194(1): 38-52, 2023 06 28.
Article En | MEDLINE | ID: mdl-37195416

Per- and polyfluoroalkyl substances (PFAS) are a wide range of chemicals that are used in a variety of consumer and industrial products leading to direct human exposure. Many PFAS are chemically nonreactive and persistent in the environment, resulting in additional exposure from water, soil, and dietary intake. While some PFAS have documented negative health effects, data on simultaneous exposures to multiple PFAS (PFAS mixtures) are inadequate for making informed decisions for risk assessment. The current study leverages data from previous work in our group using Templated Oligo-Sequencing (TempO-Seq) for high-throughput transcriptomic analysis of PFAS-exposed primary human liver cell spheroids; herein, we determine the transcriptomic potency of PFAS in mixtures. Gene expression data from single PFAS and mixture exposures of liver cell spheroids were subject to benchmark concentration (BMC) analysis. We used the 25th lowest gene BMC as the point of departure to compare the potencies of single PFAS to PFAS mixtures of varying complexity and composition. Specifically, the empirical potency of 8 PFAS mixtures were compared to predicted mixture potencies calculated using the principal of concentration addition (ie, dose addition) in which mixture component potencies are summed by proportion to predict mixture potency. In this study, for most mixtures, empirical mixture potencies were comparable to potencies calculated through concentration addition. This work supports that the effects of PFAS mixtures on gene expression largely follow the concentration addition predicted response and suggests that effects of these individual PFAS in mixtures are not strongly synergistic or antagonistic.


Alkanesulfonic Acids , Fluorocarbons , Humans , Transcriptome , Fluorocarbons/toxicity , Liver , Hepatocytes , Eating
5.
Toxicol Sci ; 191(2): 266-275, 2023 02 17.
Article En | MEDLINE | ID: mdl-36534918

Since initial regulatory action in 2010 in Canada, bisphenol A (BPA) has been progressively replaced by structurally related alternative chemicals. Unfortunately, many of these chemicals are data-poor, limiting toxicological risk assessment. We used high-throughput transcriptomics to evaluate potential hazards and compare potencies of BPA and 15 BPA alternative chemicals in cultured breast cancer cells. MCF-7 cells were exposed to BPA and 15 alternative chemicals (0.0005-100 µM) for 48 h. TempO-Seq (BioSpyder Inc) was used to examine global transcriptomic changes and estrogen receptor alpha (ERα)-associated transcriptional changes. Benchmark concentration (BMC) analysis was conducted to identify 2 global transcriptomic points of departure: (1) the lowest pathway median gene BMC and (2) the 25th lowest rank-ordered gene BMC. ERα activation was evaluated using a published transcriptomic biomarker and an ERα-specific transcriptomic point of departure was derived. Genes fitting BMC models were subjected to upstream regulator and canonical pathway analysis in Ingenuity Pathway Analysis. Biomarker analysis identified BPA and 8 alternative chemicals as ERα active. Global and ERα transcriptomic points of departure produced highly similar potency rankings with bisphenol AF as the most potent chemical tested, followed by BPA and bisphenol C. Further, BPA and transcriptionally active alternative chemicals enriched similar gene sets associated with increased cell division and cancer-related processes. These data provide support for future read-across applications of transcriptomic profiling for risk assessment of data-poor chemicals and suggest that several BPA alternative chemicals may cause hazards at similar concentrations to BPA.


Benzhydryl Compounds , Estrogen Receptor alpha , Transcriptome , Humans , Benzhydryl Compounds/toxicity , Estrogen Receptor alpha/metabolism , Estrone , Gene Expression Profiling , MCF-7 Cells , Estrogens/adverse effects , Estrogens/pharmacology
6.
Toxicol Sci ; 190(2): 127-132, 2022 11 23.
Article En | MEDLINE | ID: mdl-36165699

Use of molecular data in human and ecological health risk assessments of industrial chemicals and agrochemicals has been anticipated by the scientific community for many years; however, these data are rarely used for risk assessment. Here, a logic framework is proposed to explore the feasibility and future development of transcriptomic methods to refine and replace the current apical endpoint-based regulatory toxicity testing paradigm. Four foundational principles are outlined and discussed that would need to be accepted by stakeholders prior to this transformative vision being realized. Well-supported by current knowledge, the first principle is that transcriptomics is a reliable tool for detecting alterations in gene expression that result from endogenous or exogenous influences on the test organism. The second principle states that alterations in gene expression are indicators of adverse or adaptive biological responses to stressors in an organism. Principle 3 is that transcriptomics can be employed to establish a benchmark dose-based point of departure (POD) from short-term, in vivo studies at a dose level below which a concerted molecular change (CMC) is not expected. Finally, Principle 4 states that the use of a transcriptomic POD (set at the CMC dose level) will support a human health-protective risk assessment. If all four principles are substantiated, this vision is expected to transform aspects of the industrial chemical and agrochemical risk assessment process that are focused on establishing safe exposure levels for mammals across numerous toxicological contexts resulting in a significant reduction in animal use while providing equal or greater protection of human health. Importantly, these principles and approaches are also generally applicable for ecological safety assessment.


Toxicity Tests , Transcriptome , Animals , Humans , Risk Assessment/methods , Benchmarking , Mammals
7.
Toxicol Sci ; 184(1): 154-169, 2021 10 27.
Article En | MEDLINE | ID: mdl-34453843

Per- and polyfluoroalkyl substances (PFAS) are some of the most prominent organic contaminants in human blood. Although the toxicological implications of human exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are well established, data on lesser-understood PFAS are limited. New approach methodologies (NAMs) that apply bioinformatic tools to high-throughput data are being increasingly considered to inform risk assessment for data-poor chemicals. The aim of this study was to compare the potencies (ie, benchmark concentrations: BMCs) of PFAS in primary human liver microtissues (3D spheroids) using high-throughput transcriptional profiling. Gene expression changes were measured using TempO-seq, a templated, multiplexed RNA-sequencing platform. Spheroids were exposed for 1 or 10 days to increasing concentrations of 23 PFAS in 3 subgroups: carboxylates (PFCAs), sulfonates (PFSAs), and fluorotelomers and sulfonamides. PFCAs and PFSAs exhibited trends toward increased transcriptional potency with carbon chain-length. Specifically, longer-chain compounds (7-10 carbons) were more likely to induce changes in gene expression and have lower transcriptional BMCs. The combined high-throughput transcriptomic and bioinformatic analyses support the capability of NAMs to efficiently assess the effects of PFAS in liver microtissues. The data enable potency ranking of PFAS for human liver cell spheroid cytotoxicity and transcriptional changes, and assessment of in vitro transcriptomic points of departure. These data improve our understanding of the possible health effects of PFAS and will be used to inform read-across for human health risk assessment.


Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/toxicity , Carboxylic Acids , Fluorocarbons/toxicity , Humans , Liver , Transcriptome
8.
Chem Res Toxicol ; 32(8): 1656-1669, 2019 08 19.
Article En | MEDLINE | ID: mdl-31340646

Methylmercury (MeHg) and perfluorooctanesulfonate (PFOS) are major contaminants of human blood that are both common in dietary fish, thereby raising questions about their combined impact on human development. Here, pregnant Sprague-Dawley rats ingested a daily dose, from gestational day 1 through to weaning, of either 1 mg/kg bw PFOS (PFOS-only), 1 mg/kg MeHg (MeHg-only), a mixture of 0.1 mg/kg PFOS and 1 mg/kg MeHg (Low-Mix), or of 1 mg/kg of PFOS and 1 mg/kg MeHg (High-Mix). Newborns were monitored for physical milestones and reflexive developmental responses, and in juveniles the spontaneous activity, anxiety, memory, and cognition were assessed. Targeted metabolomics of 199 analytes was applied to sectioned brain regions of juvenile offspring. Newborns in the High-Mix group had decreased weight gain as well as delayed reflexes and innate behavioral responses compared to controls and individual chemical groups indicating a toxicological interaction on early development. In juveniles, cumulative mixture effects increased in a dose-dependent manner in tests of anxiety-like behavior. However, other developmental test results suggested antagonism, as PFOS-only and MeHg-only juveniles had increased hyperactivity and thigmotaxic behavior, respectively, but fewer effects in Low-Mix and High-Mix groups. Consistent with these behavioral observations, a pattern of antagonism was also observed in neurochemicals measured in rat cortex, as PFOS-only and MeHg-only juveniles had altered concentrations of metabolites (e.g., lipids, amino acids, and biogenic amines), while no changes were evident in the combined exposures. The cortical metabolites altered in PFOS-only and MeHg-only exposed groups are involved in inhibitory and excitatory neurotransmission. These proof-of-principle findings at relatively high doses indicate the potential for toxicological interaction between PFOS and MeHg, with developmental-stage specific effects. Future mixture studies at lower doses are warranted, and prospective human birth cohorts should consider possible confounding effects from PFOS and mercury exposure on neurodevelopment.


Alkanesulfonic Acids/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Fluorocarbons/pharmacology , Metabolomics , Methylmercury Compounds/pharmacology , Alkanesulfonic Acids/administration & dosage , Alkanesulfonic Acids/analysis , Animals , Brain/pathology , Dose-Response Relationship, Drug , Female , Fluorocarbons/administration & dosage , Fluorocarbons/analysis , Male , Methylmercury Compounds/administration & dosage , Methylmercury Compounds/analysis , Pregnancy , Rats , Rats, Sprague-Dawley
9.
Environ Int ; 129: 389-399, 2019 08.
Article En | MEDLINE | ID: mdl-31150980

Serum perfluoroalkyl acids (PFAAs) have been linked to disruption of maternal thyroid hormone homeostasis, but results have varied between studies which we hypothesized was due to timing of the thyroid hormone measurements, variability in PFAA isomer patterns, or presence of other stressors. In a longitudinal study design, we investigated the time-dependency of associations between PFAA isomers and thyroid hormones during pregnancy and post-partum while considering thyroid peroxidase antibody (TPOAb) status and mercury (Hg) co-exposure. In participants of a prospective Canadian birth cohort (n = 494), free thyroxine (FT4), free triiodothyronine (FT3), thyroid stimulating hormone (TSH) and TPOAb were quantified in maternal plasma collected in each trimester and 3-months postpartum, and 25 PFAAs (15 linear and 10 branched) and Hg were quantified in samples collected during the second trimester. Perfluorohexane sulfonate (PFHxS) and total branched isomers of perfluorooctane sulfonate (PFOS) were positively associated with TSH in mixed-effect models, with strongest associations early in gestation. Throughout pregnancy and post-partum, PFHxS was inversely associated with FT4, consistent with elevated TSH, while Hg was inversely associated with FT3. In TPOAb-positive women, negative associations were found between PFUnA and FT4, and 1m-PFOS and TSH, supporting previous studies that thyroid disorder could increase susceptibility to PFAA-mediated hormone dysregulation. Hg did not confound associations but was a significant interaction term, revealing further positive associations between PFOS isomers (∑3m+4m-PFOS) and TSH. Higher perfluoroalkyl sulfonate exposures were associated with higher TSH and/or lower FT4, strongly suggestive that PFHxS and branched PFOS isomers are risk factors for subclinical maternal hypothyroidism. Isomer-specific analysis is important in future studies, as crude measures of 'total-PFOS' masked the associations of branched isomers. A concerning result was for PFHxS which had consistent negative associations with FT4 at all time points and a positive association with TSH in early pregnancy when fetal development is most sensitive to disruption.


Alkanesulfonates/blood , Environmental Pollutants/blood , Hypothyroidism/chemically induced , Pregnancy Complications/chemically induced , Thyroid Hormones/blood , Adult , Alkanesulfonic Acids/blood , Autoantibodies/blood , Canada , Environmental Pollutants/toxicity , Female , Fluorocarbons/blood , Humans , Hypothyroidism/blood , Longitudinal Studies , Pregnancy , Pregnancy Complications/blood , Pregnancy Trimester, Second , Prospective Studies , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood
10.
Environ Sci Technol ; 51(5): 2766-2775, 2017 03 07.
Article En | MEDLINE | ID: mdl-28192988

The bioaccumulation of perfluoroalkylated substances (PFASs) in plankton has previously been evaluated only in freshwater and regional seas, but not for the large oligotrophic global oceans. Plankton samples from the tropical and subtropical Pacific, Atlantic and Indian Oceans were collected during the Malaspina 2010 circumnavigation expedition, and analyzed for 14 ionizable PFASs, including perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and their respective linear and branched isomers. PFOA and PFOS concentrations in plankton ranged from 0.1 to 43 ng gdw-1 and from 0.5 to 6.7 ng gdw-1, respectively. The relative abundance of branched PFOA in the northern hemisphere was correlated with distance to North America, consistent with the historical production and coherent with previously reported patterns in seawater. The plankton samples showing the highest PFOS concentrations also presented the largest relative abundances of branched PFOS, suggesting a selective cycling/fractionation of branched PFOS in the surface ocean mediated by plankton. Bioaccumulation factors (BAFs) for plankton were calculated for six PFASs, including short chain PFASs. PFASs Log BAFs (wet weight) ranged from 2.6 ± 0.8 for perfluorohexanesulfonic acid (PFHxS), to 4.4 ± 0.6 for perfluoroheptanoic acid (PFHpA). The vertical transport of PFASs due to the settling of organic matter bound PFAS (biological pump) was estimated from an organic matter settling fluxes climatology and the PFAS concentrations in plankton. The global average sinking fluxes were 0.8 ± 1.3 ng m-2d-1 for PFOA, and 1.1 ± 2.1 ng m-2d-1 for PFOS. The residence times of PFAS in the surface ocean, assuming the biological pump as the unique sink, showed a wide range of variability, from few years to millennia, depending on the sampling site and individual compound. Further process-based studies are needed to constrain the oceanic sink of PFAS.


Plankton/metabolism , Water Pollutants, Chemical , Alkanesulfonic Acids , Fluorocarbons , Fresh Water , Indian Ocean , Seawater
11.
Cryobiology ; 71(2): 306-17, 2015 Oct.
Article En | MEDLINE | ID: mdl-26254036

The success of cryopreservation protocols is largely based on membrane integrity assessments after thawing, since membrane integrity can be considered to give an upper limit in assessment of cell viability and the plasma membrane is considered to be a primary site of cryoinjury. However, the exposure of cells to conditions associated with low temperatures can induce injury to cellular structure and function that may not be readily identified by membrane integrity alone. Interrupted cooling protocols (including interrupted slow cooling without a hold time (graded freezing), and interrupted rapid cooling with a hold time (two-step freezing)), can yield important information about cryoinjury by separating the damage that occurs upon cooling to (and possibly holding at) a critical intermediate temperature range from the damage that occurs upon plunging to the storage temperature (liquid nitrogen). In this study, we used interrupted cooling protocols in the absence of cryoprotectant to investigate the progression of damage to human umbilical vein endothelial cells (HUVEC), comparing an assessment of membrane integrity with a mitochondrial polarization assay. Additionally, the membrane integrity response of HUVEC to interrupted cooling was investigated as a function of cooling rate (for interrupted slow cooling) and hold time (for interrupted rapid cooling). A key finding of this work was that under slow cooling conditions which resulted in a large number of membrane intact cells immediately post thaw, mitochondria are predominantly in a non-functional depolarized state. This study, the first to look directly at mitochondrial polarization throughout interrupted cooling profiles and a detailed study of HUVEC response, highlights the complexity of the progression of cell damage, as the pattern and extent of cell injury throughout the preservation process differs by injury site.


Cell Membrane/physiology , Cryopreservation/methods , Human Umbilical Vein Endothelial Cells/physiology , Membrane Potential, Mitochondrial/physiology , Mitochondria/physiology , Cell Survival , Cells, Cultured , Cryoprotective Agents/pharmacology , Freezing , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Temperature
12.
Cryobiology ; 69(1): 91-9, 2014 Aug.
Article En | MEDLINE | ID: mdl-24880088

Flow cytometry is a key instrument in biological studies, used to identify and analyze cells in suspension. The identification of cells from debris is commonly based on light scatter properties as it has been shown that there is a relationship between forward scattered light and cell volume and this has become common practice in flow cytometry. Cryobiological conditions induce changes in cells that alter their light scatter properties. Cells with membrane damage from freeze-thaw stress produce lower forward scatter signals and may fall below standard forward scatter thresholds. In contrast to light scatter properties that cannot identify damaged cells from debris, fluorescent dyes used in membrane integrity and mitochondrial polarization assays are capable of labeling and discriminating all cells in suspension. Under cryobiological conditions, isolating cell populations is more effectively accomplished by gating on fluorescence rather than light scatter properties. This study shows the limitations of using forward scatter thresholds in flow cytometry to identify and gate cells after exposure to a freeze-thaw protocol and demonstrates the use of fluorescence as an alternative means of identifying and analyzing cells.


Flow Cytometry/methods , Human Umbilical Vein Endothelial Cells/cytology , Cell Size , Cells, Cultured , Cryopreservation , Fluorescence , Humans , Membrane Potential, Mitochondrial
...